# Infrared spectroscopy and thermodynamics of indium tri-iodide vapour species

S. Dickinson <sup>a</sup> and R.J.M. Konings <sup>b,\*</sup>

"AEA Reactor Services, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH (UK) "Netherlands Energy Research Foundation ECN, P.O. Box 1, 1755 ZG Petten (The Netherlands)

(Received 3 March 1993; accepted 14 March 1993)

### Abstract

The infrared spectra of the vapour over  $InI_3$  were studied by matrix isolation and gas-phase techniques. The spectrum of the saturated vapour at 400 K isolated in an Ar matrix is thought to arise from dimeric as well as monomeric molecules. Four fundamental vibration frequencies were assigned to the dimer. Superheating of the vapour resulted in a decrease in the dimer relative to the monomer and, at 990 K, the appearance of InI(g). The gas-phase spectrum (at 500 K) showed the three fundamentals of the monomer and a single low-intensity absorption which could be attributed to the dimeric molecule. The thermodynamic functions of  $InI_3(g)$  and  $In_2I_6(g)$  have been calculated.

### INTRODUCTION

In the event of a severe accident in a nuclear fission reactor, interaction may occur between the fission product iodine and the (In,Cd,Ag) control-rod alloy. As a consequence, many competitive reactions involving the formation of the relevant metal iodides have to be considered in the understanding of the behaviour of the radiologically hazardous iodine. Thermochemical models are commonly used to predict the speciation of iodine in the wide range of conditions that might occur in an accident sequence. In the present study we have investigated the vapour over  $InI_3$  by matrix isolation and gas-phase infrared spectroscopy. The molecular parameters thus obtained have been used to calculate the thermodynamic properties of the vapour species  $InI_3$  and its dimer  $In_2I_6$ .

<sup>\*</sup> Corresponding author.

# EXPERIMENTAL DETAILS

 $InI_3$  was purchased from Cerac (typical purity 99.999%) and used without further purification.

The infrared spectra of the matrix-isolated species were obtained using a Bruker IFS 113v Fourier transform spectrometer and a matrix isolation apparatus developed at Winfrith Technology Centre [1]. Briefly, the sample is vaporized under vacuum from a silica furnace. The inert matrix gas (argon) is introduced throughout the experiment, so that the sample vapour molecules and matrix-gas co-condense on the deposition window which is cooled to about 12 K by a closed-cycle helium cryostat. The cryostat assembly is then rotated to bring the deposition window into the beam of the spectrometer. A silicon deposition window is used, whereas the vacuum shroud windows are made of polythene. A global light source, a Mylar beam splitter and a DTGS detector are used in measuring the spectrum.

The gas-phase infrared spectra were recorded with a BOMEM DA3.02 Fourier transform spectrometer equipped with an optical gas-cell constructed at ECN [2, 3]. The main body of the cell consists of a silica tube (95 cm long and 6 cm in diameter) which is heated in a 62.5 cm long three-zone furnace. The temperature is measured and controlled by three chromel-alumel thermocouples placed at the windings of the zones. Optical windows are mounted in water-cooled flanges at both ends of the tube.

The cell was loaded in an argon-filled glove box. The gas atmosphere in the cell was argon at a pressure of 15 mbar at room temperature. The following experimental arrangements were used for the operation of the spectrometer in the  $375-25 \text{ cm}^{-1}$  range: silicon windows, a globar or a mercury discharge light source, Mylar beamsplitters and a bolometer operating at 4.2 or 1.6 K. The spectra were recorded at 0.5 cm<sup>-1</sup> resolution; 128 scans were co-added.

## **RESULTS AND DISCUSSION**

# **Band** assignment

Electron diffraction measurements [4, 5] of gaseous InI<sub>3</sub> have shown that the molecule has a planar geometry ( $D_{3h}$  point group) resulting in four fundamental modes of vibration:  $\Gamma_{mol} = A'_1 + A''_2 + 2E'$ . The selection rules allow three infrared-active transitions. The structure of gaseous In<sub>2</sub>I<sub>6</sub> has not been studied experimentally but it has been shown that solid indium(III) iodide consists of discrete In<sub>2</sub>I<sub>6</sub> molecules held together by weak forces [6], being isostructural with the Al<sub>2</sub>Cl<sub>6</sub> molecule in the gas phase. Such a non-planar bridge structue ( $D_{2h}$  symmetry) gives rise to



Fig. 1. Argon matrix infrared spectra from indium tri-iodide vaporization: (a) 390 K, no superheating; (b) superheated to 770 K; (c) superheated to 970 K.

18 fundamentals  $\Gamma_{mol} = 4A_g + A_u + 2B_{1g} + 3B_{1u} + 2B_{2g} + 2B_{2u} + B_{3g} + 3B_{3u}$ , the selection rules allowing eight infrared-active transitions.

The matrix-isolation infrared spectrum of the vapour evolved at 400 K shows six bands at 236, 231, 194, 180, 160 and 124 cm<sup>-1</sup> (Fig. 1), the first two maxima partially overlapping. When the vapour was superheated to about 770 K, the intensities of most of the bands decreased significantly and the spectrum became dominated by one single band at 236 cm<sup>-1</sup>. When the superheat temperature was further increased to 970 K, this band also decreased in intensity and a new, sharp band at 167.7 cm<sup>-1</sup> became the dominant feature. The experiments were repeated several times, with and without superheating of the vapour, and the spectra always showed the same correlations between the bands, indicating that random variations in the procedures did not have a significant effect on the composition of the isolated vapour.

The frequencies at 231, 180, 160 and 124 cm<sup>-1</sup> are close to those

| Source           | Method/state <sup>a</sup> | $v_8$ | $v_9$ | $v_{10}$ | <i>v</i> <sub>13</sub> | $v_{14}$ | $v_{16}$ | <i>v</i> <sub>17</sub> | $v_{18}$ |
|------------------|---------------------------|-------|-------|----------|------------------------|----------|----------|------------------------|----------|
| Perov et al. [9] | IR/matrix                 | 288   |       | _        | 150                    | _        | 177      | 122                    | 58       |
| This study       | IR/matrix                 | 231   |       | _        | 160                    |          | 180      | 124                    | _        |
|                  | IR/gas                    | -     | -     | -        | -                      | -        | 175      | -                      | -        |

TABLE 1 The IR-active wavenumbers of  $In_2I_6(g)$  in cm<sup>-1</sup>

<sup>a</sup> IR, infrared spectroscopy.

previously reported for InI<sub>3</sub> in the solid phase [7, 8] and, consequently, it is concluded that these bands are due to dimeric molecules. They are assigned to the In–I stretching modes  $v_8$ ,  $v_{13}$ ,  $v_{16}$  and  $v_{17}$ , respectively (Table 1). The agreement with the study by Perov et al. [9] on matrix-isolated In<sub>2</sub>I<sub>6</sub> is good, except for the  $v_8$  band (see Table 1). Because of the differences in the intensities of the bands at 232 and 236 cm<sup>-1</sup> in the experiments with and without superheating, it is concluded that the former does not belong to the dimer; it is assigned to the asymmetric In–I stretching frequency of the InI<sub>3</sub> molecule. The band at 167.7 cm<sup>-1</sup> is assigned to molecular InI, being close to the value of 177 cm<sup>-1</sup> reported for the gas [10].

The infrared spectrum of the gas phase above  $InI_3$  in the 500–525 K range shows five strong absorption bands at 228.8, 64.5, 53.2, 48.1 and 44.3 cm<sup>-1</sup> and a low-intensity band at 175 cm<sup>-1</sup> (Fig. 2). The differences with the results of the matrix-isolation spectrum are distinct. The general appearence of the spectrum shows great similarity with that of the isostructural AlCl<sub>3</sub> molecule [3] i.e. sharp peaks for the  $v_2$  and  $v_3$  modes, whereas the three bands at the lowest wavenumbers form a typical PQR



Fig. 2. The infrared spectrum of the vapour above InI<sub>3</sub> at 500 K.

| The violational wavenumber of $Im_3(g)$ in cm |                       |                                       |                                                       |  |  |  |  |  |
|-----------------------------------------------|-----------------------|---------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| $v_1$                                         | $v_2$                 | <i>v</i> <sub>3</sub>                 | <i>V</i> <sub>4</sub>                                 |  |  |  |  |  |
| 151                                           |                       | _                                     | 44                                                    |  |  |  |  |  |
|                                               | -                     | 225                                   | _                                                     |  |  |  |  |  |
|                                               | 56                    | _                                     | 48                                                    |  |  |  |  |  |
|                                               | 64.5                  | 228.8                                 | 48.1                                                  |  |  |  |  |  |
|                                               | -                     | 236                                   | -                                                     |  |  |  |  |  |
|                                               | ν <sub>1</sub><br>151 | $v_1 v_2$<br>151 -<br>56<br>64.5<br>- | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |

The vibrational wavenumber of  $InI_3(g)$  in cm<sup>-1</sup>

<sup>a</sup> IR, infrared spectroscopy; R, Raman spectroscopy.

structure of the  $v_4$  mode of a planar XY<sub>3</sub> molecule. We therefore conclude that the principal vapour species in these experiments is monomeric InI<sub>3</sub>. The low-intensity band at 175 cm<sup>-1</sup> does not fit in this scheme as a fundamental. It is most probably due to dimeric molecules, corresponding to the 180 cm<sup>-1</sup> band found in the matrix; the more intense  $v_8$  dimer band is almost certainly contained within the envelope of the 228.8 cm<sup>-1</sup> band. The low intensity of the dimer band indicates a minor contribution (<10%) to the vapour. The values for the fundamentals of InI<sub>3</sub> are in reasonable agreement with previous studies [9, 11, 12], as summarized in Table 2.

# Thermodynamic properties

The ideal gas thermodynamic functions of  $InI_3(g)$  and  $In_2I_6(g)$  have been calculated from the molecular parameters shown in Table 3 by a rigid-rotor

# TABLE 3

TABLE 2

The molecular parameters used in the statistical thermodynamic calculation

|                                                            | InI <sub>3</sub>             | $In_2I_6$                 |
|------------------------------------------------------------|------------------------------|---------------------------|
| Symmetry group                                             | $D_{3h}$                     | D <sub>2b</sub>           |
| Symmetry number, $\sigma$                                  | 6                            | 4                         |
| $M/g \text{ mol}^{-1}$                                     | 495.5334                     | 991.0668                  |
| r(In-I)/nm                                                 | 0.2629                       | 0.2614                    |
| $r(In-I_{bridge})/nm$                                      | -                            | 0.280                     |
| ((I-In-I)/deg                                              |                              | 130                       |
| $\langle (I_{\text{bridge}} - In - I_{\text{bridge}})/deg$ |                              | 80                        |
| $v_i$ (degeneracy)/cm <sup>-1</sup>                        | 151, 64.5, 228.8(2), 48.1(2) | 187, 134, 69, 40, 35,     |
| _                                                          |                              | 114, 55, 231, 54, 15,     |
|                                                            |                              | 232, 49, 160, 49, 44,     |
|                                                            |                              | 180, 124, 59              |
| $I_{\rm A}I_{\rm B}I_{\rm C}/{\rm g}^3{\rm cm}^6$          | $2.0856 \times 10^{-110}$    | $1.1275 \times 10^{-108}$ |
| $g_0$                                                      | 1                            | 1                         |

| 1 | 1 | 6 |  |
|---|---|---|--|
|   |   |   |  |

TABLE 4

|                                | 6 7                                                        |                                                          | -3                                                              | 0                                                                |  |  |  |  |
|--------------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|
| Т/К                            | $C_p^{\ominus}(T)/$<br>J mol <sup>-1</sup> K <sup>-1</sup> | $S^{\ominus}(T)/$<br>J mol <sup>-1</sup> K <sup>-1</sup> | $\Phi^{\ominus}(T)^{a}/$<br>J mol <sup>-1</sup> K <sup>-1</sup> | $[H^{\ominus}(T) - H(298.15 \text{ K})]/$<br>J mol <sup>-1</sup> |  |  |  |  |
| InI <sub>3</sub>               |                                                            |                                                          |                                                                 | ······································                           |  |  |  |  |
| 298.15                         | 81.054                                                     | 398.157                                                  | 398.157                                                         | 0                                                                |  |  |  |  |
| 400                            | 81.957                                                     | 422.121                                                  | 401.352                                                         | 8308                                                             |  |  |  |  |
| 500                            | 82.377                                                     | 440.459                                                  | 407.406                                                         | 16527                                                            |  |  |  |  |
| 600                            | 82.609                                                     | 455.501                                                  | 414.206                                                         | 24777                                                            |  |  |  |  |
| 700                            | 82.750                                                     | 468.247                                                  | 421.039                                                         | 33046                                                            |  |  |  |  |
| 800                            | 82.842                                                     | 479.303                                                  | 427.646                                                         | 41325                                                            |  |  |  |  |
| 900                            | 82.905                                                     | 489.064                                                  | 433.938                                                         | 49613                                                            |  |  |  |  |
| 1000                           | 82.951                                                     | 497.801                                                  | 439.895                                                         | 57906                                                            |  |  |  |  |
| 1200                           | 83.010                                                     | 512.931                                                  | 450.845                                                         | 74502                                                            |  |  |  |  |
| 1400                           | 83.046                                                     | 525.730                                                  | 460.652                                                         | 91108                                                            |  |  |  |  |
| 1600                           | 83.069                                                     | 536.821                                                  | 469.496                                                         | 107720                                                           |  |  |  |  |
| 1800                           | 83.085                                                     | 546.606                                                  | 477.530                                                         | 124335                                                           |  |  |  |  |
| 2000                           | 83.096                                                     | 555.360                                                  | 484.883                                                         | 140954                                                           |  |  |  |  |
| In <sub>2</sub> I <sub>6</sub> |                                                            |                                                          |                                                                 |                                                                  |  |  |  |  |
| 298.15                         | 178.728                                                    | 638.636                                                  | 638.636                                                         | 0                                                                |  |  |  |  |
| 300                            | 178.777                                                    | 639.741                                                  | 638.639                                                         | 331                                                              |  |  |  |  |
| 400                            | 180.549                                                    | 691.450                                                  | 645.677                                                         | 18309                                                            |  |  |  |  |
| 500                            | 181.390                                                    | 731.839                                                  | 659.018                                                         | 36411                                                            |  |  |  |  |
| 600                            | 181.853                                                    | 764.955                                                  | 673.997                                                         | 54575                                                            |  |  |  |  |
| 700                            | 182.134                                                    | 793.011                                                  | 689.046                                                         | 72775                                                            |  |  |  |  |
| 800                            | 182.317                                                    | 817.344                                                  | 703.596                                                         | 90998                                                            |  |  |  |  |
| 900                            | 182.443                                                    | 838.826                                                  | 717.451                                                         | 109237                                                           |  |  |  |  |
| 1000                           | 182.533                                                    | 858.053                                                  | 730.567                                                         | 127486                                                           |  |  |  |  |
| 1200                           | 182.650                                                    | 891.344                                                  | 754.673                                                         | 164005                                                           |  |  |  |  |
| 1400                           | 182.722                                                    | 919.505                                                  | 776.260                                                         | 200543                                                           |  |  |  |  |
| 1600                           | 182.768                                                    | 943.907                                                  | 795.725                                                         | 237092                                                           |  |  |  |  |
| 1800                           | 182.800                                                    | 965.436                                                  | 813.409                                                         | 273649                                                           |  |  |  |  |
| 2000                           | 182.822                                                    | 984.698                                                  | 829.592                                                         | 310211                                                           |  |  |  |  |
|                                |                                                            |                                                          |                                                                 |                                                                  |  |  |  |  |

| The ideal | gas | thermody | ynamic | functions | of | InI <sub>3</sub> | and | In <sub>2</sub> | I |
|-----------|-----|----------|--------|-----------|----|------------------|-----|-----------------|---|
|-----------|-----|----------|--------|-----------|----|------------------|-----|-----------------|---|

<sup>a</sup>  $\Phi^{\ominus}(T) = -[G^{\ominus}(T) - H^{\ominus}(298.15 \text{ K})]/T.$ 

harmonic oscillator approach and are listed in Table 4. For  $InI_3(g)$ , the geometric parameters were taken from the electron diffraction study by Giricheva et al. [4], from the vibrational parameters of the present gas-phase results  $(v_2-v_4)$ , and from Beattie and Horder  $(v_1)$  [11]. The geometric parameters were estimated for  $In_2I_6(g)$  to be quite similar to those of the solid phase molecule [4]. For the vibrational contribution, the four fundamentals observed in the present study were supplemented with the solid phase data obtained by Adams and Churchill from a detailed normal co-ordinate analysis [8], which can adequately be applied to the gaseous phase in view of the close agreement between the frequencies for the matrix-isolated molecule and the condensed phase. However, the value

for the  $v_{10}$  fundamental, the ring deformation, was not included in the study of Adams and Churchill. Beattie et al. [7] obtained  $v_{10} = 12 \text{ cm}^{-1}$  from a normal co-ordinate analysis for solid In<sub>2</sub>I<sub>6</sub>. In general, little is known about the  $v_{10}$  modes in the non-planar bridged X<sub>2</sub>Y<sub>6</sub> metal halides making an estimate rather difficult; this band has only been observed for Al<sub>2</sub>Cl<sub>6</sub> (at 25 cm<sup>-1</sup>). We therefore adopt the value suggested by Beattie et al. for our calculations:  $S^{\oplus}(\text{InI}_3, \text{g}, 298.15 \text{ K}) = 398.2 \pm 1.5 \text{ J mol}^{-1} \text{ K}^{-1}$ ;  $S^{\oplus}(\text{In}_2\text{I}_6, \text{g}, 298.15 \text{ K}) = 638.6 \pm 6.0 \text{ J mol}^{-1} \text{ K}^{-1}$ , the uncertainties being estimated.

## Vapour composition

Regarding the proportion of dimer in the saturated vapour above InI<sub>3</sub>, the gas phase and matrix-isolation experiments yield different results. Whereas the in situ IR spectroscopic experiments of the gas phase indicate that the vapour at 500–525 K consists predominantly of monomeric  $InI_3$ molecules, the inert gas matrix-isolation work shows a significant contribution of dimeric molecules to the saturated vapour at 390 K, as well as to the superheated vapour at 770 K. Part of this difference may be attributed to the influence of the difference in temperature of the experiments on the composition of the saturated vapour phase, although this would require a much more rapid decrease in the dimer fraction than that calculated from existing thermochemical data. Three additional reasons can be suggested in explanation: firstly, dimerization in the matrix sites may increase the proportion of dimer beyond the equilibrium value; secondly, the vapour may not have reached its equilibrium composition during the superheating phase of the matrix-isolation experiments; and thirdly, the pressure in the gas cell may not have reached its equilibrium value. Although in all cases efforts were made to minimize the effects, their magnitude is not known; the first two are probably responsible for most of the dimer observed in the matrix-isolation experiments in which superheating was used.

Previous studies on the vapour composition are also inconclusive. Giricheva et al. [4, 5] studied the saturated vapour above  $InI_3$  by electron diffraction at 463 K and concluded that it consists of a mixture of monomeric (80%) and dimeric (20%) molecules, close to the results of the present gas-phase study. Smith and Barrow [13], who studied the vapour pressure of  $InI_3$  in the 373–405 K range, did not specify the composition of the vapour, although the torsion-effusion technique they applied is excellently suited to determine the presence of polymeric molecules. Federov et al. [14] measured the vapour pressure by a transpiration technique and assumed that only dimeric molecules are present. Other studies of the vapour is a mixture of  $I(g), I_2(g), InI_2(g), InI_3(g)$  and  $In_2I_6(g)$  [15–17]. Extrapolation of the monomer/dimer equilibrium data to

the temperatures of the present experiments gives monomer/dimer ratios of around 0.3, close to the matrix-isolation results. Clearly, accurate vapour density or mass-spectrometric measurements are required to elucidate this problem.

# ACKNOWLEDGEMENTS

Mr. A.S. Booij is thanked for experimental assistance at ECN. This research was funded by the Commission of the European Communities through JRC-Ispra and the UK Health and Safety Executive.

# REFERENCES

- 1 S. Dickinson, Thesis, University of Southampton, 1990.
- 2 R.J.M. Konings, A.S. Booij and E.H.P. Cordfunke, Vibr. Spectrosc., 1 (1990) 383.
- 3 R.J.M. Konings and A.S. Booij, J. Chem. Thermodyn., 24 (1992) 1181.
- 4 N.I. Giricheva, V.M. Petrov, G.V. Girichev, V.A. Titov and T.P. Chusova, Zh. Strukt. Khim., 27 (1986) 5.
- 5 N.I. Giricheva, V.M. Petrov, G.V. Girichev, V.A. Titov and T.P. Chusova, Zh. Strukt. Khim., 27 (1986) 714.
- 6 R. Kneip, P. Blees and W. Poll, Angew. Chem., 94 (1982) 370.
- 7 I.R. Beattie, T. Gilson and G.A. Ozin, J. Chem. Soc. A, (1968) 813.
- 8 D.M. Adams and R.G. Churchill, J. Chem. Soc. A, (1970) 697.
- 9 P.A. Perov, S.V. Nedyak and A.A. Mal'tsev, Vestn. Mosk. Univ., Khim., 29 (1974) 201.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978.
- 11 I.R. Beattie and J.R. Horder, J. Chem. Soc. A, (1969) 2655.
- 12 G.K. Selivanov and A.A. Mal'tsev, Zh. Strukt. Khim., 14 (1973) 943.
- 13 F.J. Smith and R.F. Barrow, Trans. Faraday Soc., 54 (1958) 826.
- 14 P.I. Federov, A.G. Dudareva and N.F. Drobot, Zh. Neorg. Chem., 8 (1963) 1287.
- 15 Ya.Kh. Grinberg, V.A. Boryakova and V.F. Shevel'kov, Izv. Akad. Nauk SSSR Neorg. Mat., 12 (1976) 402.
- 16 G.A. Zaidova, S.M. Gadziev and A.A. Kuliev, Zh. Fiz. Khim., 48 (1974) 1057.
- 17 V.A. Titov and T.P. Chusova, Izv. Sib. Otd. Akad. Nauk SSSR Ser. Khim., 1 (1987) 75.

118